K - CK - CCK
FLUID COUPLINGS
INDEX

DESCRIPTION pag. 2
PERFORMANCE CURVES 3
STARTING TORQUE CHARACTERISTICS 4
ADVANTAGES 5
STANDARD OR REVERSE MOUNTING 6
SPECIAL VERSIONS (ATEX) 7
PRODUCTION PROGRAM 8
SELECTION 9 ÷ 12
DIMENSIONS (IN LINE VERSIONS) 13 ÷ 23
CENTER OF GRAVITY AND MOMENT OF INERTIA 24
DIMENSIONS (PULLEY VERSIONS) 25 ÷ 26
SAFETY DEVICES 27 ÷ 29
OTHER TRANSFLUID PRODUCTS 30
SALES NETWORK
1. DESCRIPTION
The TRANSFLUID coupling (K series) is a constant fill type, comprising of three main elements:
1 - driving impeller (pump) mounted on the input shaft.
2 - driven impeller (turbine) mounted on the output shaft.
3 - cover, flanged to the outer impeller, with an oil-tight seal.
The first two elements can work both as pump or turbine.

2. OPERATING CONDITIONS
The TRANSFLUID coupling is a hydrodynamic transmission. The impellers perform like a centrifugal pump and a hydraulic turbine. With an input drive to the pump (e.g. electric motor or Diesel engine) kinetic energy is transferred to the oil in the coupling. The oil is forced, by centrifugal force, across the blades of the pump towards the outside of the coupling.
The turbine absorbs kinetic energy and generates a torque always equal to input torque, thus causing rotation of the output shaft. Since there are no mechanical connections, the wear is practically zero.
The efficiency is influenced only by the speed difference (slip) between pump and turbine.

The slip is essential for the correct operation of the coupling - there could not be torque transmission without slip! The formula for slip, from which the power loss can be deduced is as follows:

\[
\text{slip} \% = \frac{\text{input speed} - \text{output speed}}{\text{input speed}} \times 100
\]

In normal conditions (standard duty), slip can vary from 1.5% (large power applications) to 6% (small power applications).

TRANSFLUID couplings follow the laws of all centrifugal machines:
1 - transmitted torque is proportional to the square of input speed;
2 - transmitted power is proportional to the third power of input speed;
3 - transmitted power is proportional to the fifth power of circuit outside diameter.
2.1 Transfluid coupling fitted on electric motors

Three phase synchronous squirrel cage motors are able to supply maximum torque only, near synchronous speed. Direct starting is the system utilized the most. Figure 1 illustrates the relationship between torque and current. It can be seen that the absorbed current is proportional to the torque only between 85% and 100% of the synchronous speed. With a motor connected directly to the load there are the following disadvantages:

- The difference between available torque and the torque required by the load is very low until the rotor has accelerated to between 80-85% of the synchronous speed.
- The absorbed current is high (up to 6 times the nominal current) throughout the starting phase causing overheating of the windings, overloads in the electrical lines and, in cases of frequent starts, major production costs.
- Over-dimensioned motors caused by the limitations indicated above.

To limit the absorbed current of the motor during the acceleration of the load, a (Δ,Δ) (wye - delta) starting system is frequently used which reduces the absorbed current by about 1/3 during starting. Unfortunately, during operation of the motor under the delta configuration, the available torque is also reduced by 1/3; and for machines with high inertias to accelerate, over-dimensioning of the motor is still required. Finally, this system does not eliminate current peaks originating from the insertion or the commutation of the device.

Any drive system using a Transfluid fluid coupling has the advantage of the motor starting essentially without load. Figure 2 compares the current demands of an electric motor when the load is directly attached verses the demand when a fluid coupling is mounted between the motor and load. The coloured area shows the energy that is lost, as heat, during start-up when a fluid coupling is not used. A Transfluid fluid coupling reduces the motor’s current draw during start-up thus reducing peak current demands. This not only reduces power costs but also reduces brown outs in the power grid and extends the life of the motor. Also at start-up, a fluid coupling allows more torque to pass to the load for acceleration than in drive systems without a fluid coupling.

Figure 3 shows two curves for a single fluid coupling and a characteristic curve of an electric motor. It is obvious from the stall curve of the fluid coupling (s = 100%) and the available motor torque, how much torque is available to accelerate the rotor of the motor (colored area). In about 1 second, the rotor of the motor accelerates passing from point A to point B. The acceleration of the load, however, is made gradually by the fluid coupling, utilizing the motor in optimal conditions, along the part of the curve between point B, 100% and point C, 2-5%. Point C is the typical point of operation during normal running.
STARTING TORQUE CHARACTERISTICS

2.2 CHARACTERISTIC CURVES

MI : transmitted torque from fluid coupling
Mm : starting torque of the electric motor
Mn : nominal torque at full load
...... : accelerating torque

NOTE: Above starting times are indicative only.
3. TRANSFLUID FLUID COUPLINGS WITH A DELAYED FILL CHAMBER

A low starting torque is achieved, with the standard circuit in a maximum oil fill condition because fluid couplings limit to less than 200% of the nominal motor torque. It is possible to limit further the starting torque down to 160% of the nominal torque, by decreasing oil fill; this, contrarily creates slip and working temperature increase in the fluid coupling.

The most convenient technical solution is to use fluid couplings with a delayed fill chamber, connected to the main circuit by calibrated bleed orifices. These externally adjustable valves, available from size 15CK (Fig. 4b), can be simply adjusted to vary starting time.

In a standstill position, the delayed fill chamber contains part of the filling oil, thus reducing the effective quantity in the working circuit (Fig. 4a) and a torque reduction is obtained, allowing the motor to quickly reach the steady running speed as if started without load.

During start-up, oil flows from the delayed fill chamber to the main circuit (Fig. 4b) in a quantity proportional to the rotating speed. As soon as the fluid coupling reaches the nominal speed, all oil flows into the main circuit (Fig. 4c) and torque is transmitted with a minimum slip.

With a simple delayed fill chamber, the ratio between starting and nominal torque may reach 150%. This ratio may be further reduced down to 120% with a double delayed fill chamber, which contains a higher oil quantity, to be progressively transferred into the main circuit during the starting phase. This is ideal for very smooth start-ups with low torque absorptions, as typically required for machinery with large inertia values and for belt conveyors.

The advantages of the delayed fill chamber become more and more evident when the power to be transmitted increases. The simple chamber is available from size 11CK, while the double chamber from size 15CCK.

3.1 SUMMARY OF THE ADVANTAGES GIVEN BY FLUID COUPLINGS

- very smooth start-ups
- reduction of current absorptions during the starting phase: the motor starts with very low load
- protection of the motor and the driven machine from jams and overloads
- utilization of asynchronous squirrel cage motors instead of special motors with soft starter devices
- higher duration and operating convenience of the whole drive train, thanks to the protection function achieved by the fluid coupling
- higher energy saving, thanks to current peak reduction
- limited starting torque down to 120% in the versions with a double delayed fill chamber
- same torque at input and output: the motor can supply the maximum torque even when load is jammed
- torsional vibration absorption for internal combustion engines, thanks to the presence of a fluid as a power transmission element
- possibility to achieve a high number of start-ups, also with an inversion of the rotation direction
- load balancing in case of a double motor drive: fluid couplings automatically adjust load speed to the motors speed
- high efficiency
- minimum maintenance
- Viton rotating seals
- cast iron and steel material with anticorrosion treatment
4. INSTALLATION

4.1 STANDARD MOUNTING

Driver inner impeller

Minimum possible inertia is added to the motor, and therefore free to accelerate more quickly.

During the starting phase, the outer impeller gradually reaches the steady running condition. For very long starting times, heat dissipation capacity is lower.

If a braking system is required, it is convenient and easy to install a brake drum or disc on the flex coupling.

In some cases, where the driven machine cannot be rotated by hand, maintenance procedures of oil checking and refilling, as well as alignment, become more difficult.

The delayed fill chamber, when present, is fitted on the driven side. The rotating speed of the said chamber gradually increases during start-up, thus leading to a longer starting time, assuming the bleed orifices diameters are not changed. If oil quantity is excessively reduced, the transmissible torque may be lower than the starting torque of the driven machine. In such a case, part of the oil remains inside the delayed chamber. This lack of oil in the fluid coupling may cause stalling.

The “switching pin” device might not work correctly on machines where, owing to irregular operating conditions, the driven side may suddenly stop or jam during the starting phase.

Flex coupling is protected by the placement of the fluid coupling before it, and therefore this configuration is fit for applications with frequent start-ups or inversions of the rotating sense.

4.2 REVERSE MOUNTING

Driver outer impeller

Higher inertia directly connected to the motor.

The outer impeller, being directly connected to the motor, reaches synchronous speed instantly. Ventilation is therefore maximum from the beginning.

The assembly of a brake disc or drum on KR fluid couplings is more difficult, expensive and leads to a longer axial length of the whole machine group.

The outer impeller and cover are connected to the motor, it is therefore possible to manually rotate the coupling to check alignment and oil level, and for refilling.

The delayed fill chamber is fitted on the driver side, and reaches the synchronous speed in a few seconds. Oil is therefore centrifuged into the main circuit gradually and completely.

Starting time is adjustable by replacing the calibrated bleed orifices. The starting phase, however, is performed in a shorter time than in the configuration with an inner driver impeller.

The switching pin operation is always assured, where fitted, as the outer impeller, always rotates because it is mounted on the driver shaft.

In case of frequent start-ups or inversions of the rotating direction, the flex coupling is much more stressed.

If not expressly required by the customer or needed for the application being performed, the fluid coupling is supplied according to our “standard” mounting. Do specify in your request for quotation whether you need a “reverse” mounting.

NOTE: Starting from size 13K and 11CK included, a baffle ring is always fitted on the driver impeller, and therefore it is not recommended to mount a fluid coupling “reverse” if “standard” mounting, or vice versa. In these cases contact Transfluid for more detailed information.
PRODUCTION PROGRAM

5 VERSIONS

5.1 IN LINE

KRG-CKRG-CCKRG: coupling with elastic coupling.
KRG-CKRG-CCKRG3: KRG version, with brake drum (...KRB) or disc (...KRBP).
KR-CKRD-CCKRD: KR with output shaft. A flexible coupling has to be used; it is possible to place it (with a convenient housing) between the motor and a hollow shaft gearbox.
KRG-CCKRG-CCKRG3: version with elastic coupling allowing removal of rubber elements without moving the machines.
EK: fluid coupling fitted with a bell housing, to be placed between a flanged electric motor and a hollow shaft gearbox.
KCG-CKCG-CCKCG: fluid coupling with gear couplings, also available with brake drum (...KCGB) or disc (...KCGBP).
KDM-CKDM-CCKDM: fluid coupling with disc couplings, also available with brake drum (...KDMB) or disc (...KDMBP).

N.B.: The ..KCG - ..KDM versions allow a radial disassembly without moving the motor or the driven machine.

5.2 PULLEY

KSD-CKSD-CCKSD: basic coupling foreseen for a flanged pulley, with simple (CK...) or double (CCK...) delayed fill chamber.
KSI-CKSI: fluid coupling with an incorporated pulley, which is fitted from inside.
KSDF-CKSDF-CCKSDF: KSD coupling with flanged pulley, externally mounted and therefore to be easily disassembled.
PRODUCTION PROGRAM

6 MOUNTING

6.1 IN LINE VERSIONS MOUNTING EXAMPLES

Fig. A Horizontal axis between the motor and the driven machine (KRG-CKRG-CCKRG and similar).

Fig. B It allows a radial disassembly without moving the motor and the driven machine (KCG-KDM and similar).

Fig. C Between a flanged electric motor and a hollow shaft gearbox by means of a bell housing (KRKR-ER and similar).

Fig. D Vertical axis mounting between the electric motor and a gearbox or driven machine. In case of order, please specify mounting type 1 or 2.

Fig. E Between the motor and a supported pulley for high powers and heavy radial loads.

N.B. Version EK (fig. C) also for vertical mounting (fig. D 1-2)

6.2 PULLEY VERSIONS MOUNTING EXAMPLES

Fig. F Horizontal axis.

Fig. G Vertical axis. When ordering, please specify mounting type 1 or 2.

7 SPECIAL VERSIONS

7.1 ATEX

It is possible to get the Transfluid fluid couplings with finished bores certified as equipment for intended use in hazardous zones according to directive 94/9/EC (Atex).

The selection of suitable Atex fluid coupling must consider an additional safety factor of 1.2 times the absorbed power (for instance, motor 132 kW @ 1500 rpm-absorbed power 120 kW x 1.2 = 144 kW power to be considered in the selection).

According to different surface categories, there is the suitable selected fluid coupling as per below table.

- Fluid coupling model
- Category 3
 - Atex Zone 2 or 22
 - Ex II 3 D or GT4
 - Ex II 2 D or GT4

- Category 2
 - Atex Zone 1 or 21

- Category 1
 - M2 industrial
 - Ex E x I M2

- Fluid fill
 - Oil or Treated water
 - Fire resistant oil
 - Treated water
 - Treated water only

Fluid fill
- Oil or Treated water
- Fire resistant oil
- Treated water only

The water to be used is a mixture of water and glycol. The water fill couplings are available upon request on all design from size 13 upwards; they have the same overall dimensions of standard couplings series. A suffix “W” identifies the coupling suitable for treated water operation (e.g. 27 CKRGW).

7.2 WATER FILL FLUID COUPLINGS

Transfluid has developed a version of water fill fluid coupling in order to meet the demands of environment friendly products as well as couplings suitable for working in hazardous zone and underground mines.

Fluid couplings - 1305

8
8. SELECTION

8.1 SELECTION CHART

The chart below may be used to select a unit size from the horsepower and input speed. If the selection point falls on a size limit line dividing one size from the other, it is advisable to select the larger size with a proportionally reduced oil fill.
8.2 SELECTION TABLE
Fluid couplings for standard electric motors.

<table>
<thead>
<tr>
<th>MOTOR TYPE</th>
<th>SHAFT DIAM.</th>
<th>3000 rpm</th>
<th>1800 rpm</th>
<th>1500 rpm</th>
<th>1200 rpm</th>
<th>1000 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kW</td>
<td>HP</td>
<td>COUPLING</td>
<td>kW</td>
<td>HP</td>
<td>COUPLING</td>
</tr>
<tr>
<td>80</td>
<td>19</td>
<td>0.75</td>
<td>7 K</td>
<td>0.55</td>
<td>7 K</td>
<td>0.59</td>
</tr>
<tr>
<td>90S</td>
<td>24</td>
<td>1.5</td>
<td>1.5</td>
<td>1.75</td>
<td>1.5</td>
<td>1.75</td>
</tr>
<tr>
<td>90L</td>
<td>24</td>
<td>2.2</td>
<td>2.2</td>
<td>3</td>
<td>2.2</td>
<td>3</td>
</tr>
<tr>
<td>100L</td>
<td>28</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>112M</td>
<td>28</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>5</td>
</tr>
<tr>
<td>132</td>
<td>38</td>
<td>5.5</td>
<td>5.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>132M</td>
<td>38</td>
<td>7.5</td>
<td>7.5</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>160M</td>
<td>42</td>
<td>11</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>160L</td>
<td>42</td>
<td>18.5</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>180M</td>
<td>48</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>200L</td>
<td>55</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>225S</td>
<td>60</td>
<td>37</td>
<td>37</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>225M</td>
<td>60</td>
<td>45</td>
<td>45</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>250M</td>
<td>60</td>
<td>55</td>
<td>55</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>280S</td>
<td>65</td>
<td>75</td>
<td>75</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>315S</td>
<td>80</td>
<td>90</td>
<td>90</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>315M</td>
<td>80</td>
<td>110</td>
<td>110</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>355S</td>
<td>80</td>
<td>160</td>
<td>160</td>
<td>220</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>355M</td>
<td>80</td>
<td>200</td>
<td>200</td>
<td>270</td>
<td>270</td>
<td>270</td>
</tr>
</tbody>
</table>

NB: The fluid coupling size is tied to the motor shaft dimensions.

NOTES:
- (1) Special version, 24 hours service
- (2) Only for KRM
- Powers refer to motors connected at 440 V, 60 Hz

Fluid couplings - 1305
8.3 PERFORMANCE CALCULATIONS
For frequent starts or high inertia acceleration, it is necessary to first carry out the following calculations. For this purpose it is necessary to know:

- \(P_m \) - input power kW
- \(n_m \) - input speed rpm
- \(P_L \) - power absorbed by the load at rated speed kW
- \(n_L \) - speed of driven machine rpm
- \(J \) - inertia of driven machine Kgm²
- \(T \) - ambient temperature °C

The preliminary selection will be made from the selection graph Tab. A depending upon input power and speed. Then check:

A) Acceleration time.
B) Max allowable temperature.
C) Max working cycles per hour

A) **Acceleration time** \(t_a \):

\[
\frac{n_u}{9.55} = \frac{n_u - J_r}{M_a} \quad \text{(sec)}
\]

where:
- \(n_u \) = coupling output speed (rpm)
- \(J_r \) = inertia of driven machine referred to coupling shaft (Kgm²)
- \(M_a \) = acceleration torque (Nm)

\[
J_r = J \left(\frac{n}{n_u} \right)^2
\]

Note:
\[
J = \frac{PD^2}{4} \quad \text{or} \quad \frac{GD^2}{4}
\]

\[
M_a = 1.65 M_m \cdot M_l
\]

where:
- \(M_m \) = 9550 \(\frac{P_m}{n_m} \) (Nominal Torque)
- \(M_l \) = 9550 \(\frac{P_l}{n_u} \) (Absorbed Torque)

B) **Max allowable temperature.**
For simplicity of calculation, ignore the heat dissipated during acceleration.

Coupling temperature rise during start-up is given by:

\[
T_a = \frac{Q}{C} \quad \text{(°C)}
\]

where:
- \(Q \) = heat generated during acceleration (kcal)
- \(C \) = total thermal capacity (metal and oil) of coupling selected from Tab. C (kcal/°C).

\[
Q = \frac{n_u}{10^4} \left(\frac{J_r \cdot n_u + M_a \cdot t_a}{76.5} \right) \quad \text{(kcal)}
\]

The final coupling temperature reached at the end of the acceleration cycle will be:

\[
T_f = T + T_a + T_i \quad \text{(°C)}
\]

where:
- \(T_f \) = final temperature (°C)
- \(T \) = ambient temperature (°C)
- \(T_a \) = temperature rise during acceleration (°C)
- \(T_i \) = temperature during steady running (°C)

\[
T_i = 2.4 \cdot \frac{P_i \cdot S}{K} \quad \text{(°C)}
\]

where:
- \(K \) = factor from Tab. D
- \(T_f \) must not exceed 150°C

C) **Max working cycles per hour** \(H \)
In addition to the heat generated in the coupling by slip during steady running, heat is also generated (as calculated above) during the acceleration period. To allow time for this heat to be dissipated, one must not exceed the max allowable number of acceleration cycles per hour.

\[
H_{\text{max}} = \frac{3600}{t_a + t_f}
\]

where:
- \(t_a \) = minimum working time

\[
t_f = \frac{1}{\left(\frac{T_a}{2} + T_i \right) \cdot K} \quad \text{(sec)}
\]
8.4 CALCULATION EXAMPLE

Assuming:
\(P_m = 20 \text{ kW} \)
\(n_m = 1450 \text{ giri/min} \)
\(P_L = 12 \text{ kW} \)
\(n_L = 700 \text{ giri/min} \)
\(J = 350 \text{ kgm}^2 \)
\(T = 25^\circ \text{C} \)

Transmission via belts.
From selection graph on Tab. A, selected size is 12K.

A) Acceleration time
From curve TF 5078-X (supplied on request) slip \(S = 4\% \)

\[
\begin{align*}
 n_u &= 1450 \cdot \left(\frac{100 - 4}{100} \right) = 1392 \text{ rpm} \\
 J_f &= 350 \cdot \left(\frac{700}{1392} \right)^2 = 88.5 \text{ Kgm}^2 \\
 M_m &= \frac{9550 \cdot 20}{1450} = 131 \text{ Nm} \\
 M_L &= \frac{9550 \cdot 12}{1392} = 82 \text{ Nm} \\
 M_{a_0} &= 1.65 \cdot 131 \cdot 82 = 134 \text{ Nm} \\
 t_a &= \frac{1392 \cdot 88.5}{9.55 \cdot 134} = 96 \text{ sec}
\end{align*}
\]

B) Max allowable temperature
\[
\begin{align*}
 Q &= \frac{1392}{10^5} \cdot \left(\frac{88.5 \cdot 1392}{76.5} \right) = 361 \text{ kcal} \\
 C &= 4.2 \text{ kcal/}^\circ \text{C} \text{ (Tab. C)} \\
 T_a &= 361 \cdot \frac{4.2}{8.9} = 86^\circ \text{C} \\
 T_C &= 8.9 \text{ (Tab. D)} \\
 T_f &= 2.4 \cdot \frac{12}{8.9} = 13^\circ \text{C} \\
 T_f &= 25 + 86 + 13 = 124^\circ \text{C}
\end{align*}
\]

C) Max working cycles per hour
\[
\begin{align*}
 t_L &= 10 \cdot \frac{361}{86 + 13} \cdot \frac{86}{8.9} = 724 \text{ sec} \\
 H &= \frac{36500}{96 + 724} = 4 \text{ starts per hour}
\end{align*}
\]
9. DIMENSIONS

- **KRB** (with brake drum)
- **KRB** (with brake disc)
- **KRG**
- **CKRG - CCKRG**

Dimensions

- **D**:
- **J**:
- **A**:
- **B**:
- **C**:
- **D**:
- **E**:
- **F**:
- **G**:
- **H**:
- **R**:
- **S**:
- **V**:
- **Z**:

Special notes:

- In case of installation on shafts without shoulders, please contact Transfluid.

Dimensions are subject to alteration without notice
SERIES 7 ÷ 19 - KRD - CKRD - CCKRD

Fluid couplings - 1305

<table>
<thead>
<tr>
<th>Size</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>G1</th>
<th>Weight Kg (without oil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>133</td>
<td>58</td>
<td>44</td>
<td>8.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>138</td>
<td>58</td>
<td>44</td>
<td>8.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>130</td>
<td>58</td>
<td>44</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>205</td>
<td>58</td>
<td>44</td>
<td>12.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>304</td>
<td>58</td>
<td>44</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>311</td>
<td>58</td>
<td>44</td>
<td>26.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>308</td>
<td>60</td>
<td>44</td>
<td>330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>403</td>
<td>75</td>
<td>75</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>403</td>
<td>75</td>
<td>75</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NB: The arrows → indicate input and output in the standard version.

– WHEN ORDERING, SPECIFY: SIZE - MODEL - Ø DIAMETER
– UPON REQUEST: BORE Ø MACHINED: G1, SPECIAL SHAFT
– G1 SHAFT WITH A KEYWAY ACCORDING TO ISO 773 - DIN 6885/1

DIMENSIONS ARE SUBJECT TO ALTERATION WITHOUT NOTICE
SERIES 21 ÷ 34 - KRG - KRB - KRBP - CK... - CCK...

Fluid couplings - 1305

NB: The arrows indicate input and output in the standard version.

Dimensions:

<table>
<thead>
<tr>
<th>D</th>
<th>J</th>
<th>A</th>
<th>B</th>
<th>B1</th>
<th>C</th>
<th>C1</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>V</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>80</td>
<td>70</td>
<td>50</td>
<td>60</td>
<td>45</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>24</td>
<td>80</td>
<td>70</td>
<td>50</td>
<td>60</td>
<td>45</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>27</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>70</td>
<td>55</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>31</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>90</td>
<td>75</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>33</td>
<td>38</td>
<td>43</td>
<td>48</td>
<td>53</td>
<td>58</td>
<td>63</td>
<td>68</td>
<td>73</td>
<td>78</td>
<td>83</td>
</tr>
</tbody>
</table>

- D bores with a keyway according to ISO 773 - DIN 6885/1
- Standard dimensions with a keyway ISO 773 - DIN 6885/1
- Standard dimensions with reduced keyway (DIN 6885/2)
- When ordering, specify size - model - D diameter for KRB or KRBP, specify X and Y or X1 and Y1, dimensions brake drum or disc
- Upon request, D finished bore

Example: 19KRBP - D80 - BRAKE DISC 450 x 30

Dimensions are subject to alteration without notice.

Drive with us
SERIES 21 ÷ 34 - KRD - CKRD - CCKRD

Fluid couplings - 1305

NB: The arrows indicate input and output in the standard version.

DIMENSIONS ARE SUBJECT TO ALTERATION WITHOUT NOTICE

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
<th>Weight Kg (without oil)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(left) (rb) (right)</td>
</tr>
<tr>
<td>21</td>
<td>290</td>
<td>292</td>
</tr>
<tr>
<td>24</td>
<td>290</td>
<td>327</td>
</tr>
<tr>
<td>27</td>
<td>333</td>
<td>561</td>
</tr>
<tr>
<td>29</td>
<td>383</td>
<td>588</td>
</tr>
<tr>
<td>34</td>
<td>437</td>
<td>689</td>
</tr>
</tbody>
</table>

* Total length with D100
– UPON REQUEST, SPECIAL SHAFT DIAMETER
The three pieces flexible coupling B3T, allows the removal of the elastic elements (rubber blocks), without removal of the electric motor; only with the „KRB3” (with brake drum) coupling the electric motor must be removed by the value of “Y”. “Y” = axial displacement male part of the coupling B3T necessary for the removal of the elastic elements.

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
<th>Weight kg (without oil)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>91</td>
</tr>
</tbody>
</table>

Fluid couplings - 1305
SERIES 9÷34 - KRM - CKRM - CCKRM

Dimensions

D	J	J1	A	B	C	C1	C2	E	F	G	H	L	P	G	R	S	Elastic coupling	Weight kg (without oil)	
9	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
12	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112	112
13	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140	140
14	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170
15	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110

COUPLING ALLOWING HIGHER MISALIGNMENTS AND THE REPLACEMENT OF THE ELASTIC ELEMENTS WITHOUT MOVING THE MACHINES

TAPER BUSH VERSION

- D Bores Relative to Taper Bushes with a Keyway according to ISO 773 – DIN 6885/1
- Cylindrical Bore without Taper Bush with a Keyway (ISO 773) – DIN 6885/1
- Cylindrical Bore without Taper Bush with a Reduced Keyway (DIN 6885/2)
- Taper Bush without Key Way

CYLINDRICAL BORE VERSION

- D Bores with a Keyway According to ISO 773 – DIN 6885/1
- Standard Dimensions with a Keyway (ISO 773) – DIN 6885/1
- Standard Dimensions with Reduced Keyway (DIN 6885/2)
- When Ordering, Specify: Size - Series D Diameter - Example: 13 CKRM-D 55

DIMENSIONS ARE SUBJECT TO ALTERATION WITHOUT NOTICE

Fluid couplings - 1305
SERIES 11÷34 - KDM - CKDM - CCKDM

Fluid couplings - 1305

- **WHEN ORDERING, SPECIFY:** SIZE - MODEL - FINISHED D-G BORES UPON REQUEST.

EXAMPLE: 27 CKDM

Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>B1 (mm)</th>
<th>B2 (mm)</th>
<th>C (mm)</th>
<th>C1 (mm)</th>
<th>C2 (mm)</th>
<th>D (mm)</th>
<th>G (mm)</th>
<th>H (mm)</th>
<th>I (mm)</th>
<th>M1 (mm)</th>
<th>M2 (mm)</th>
<th>N (mm)</th>
<th>P (mm)</th>
<th>Disc coupling size</th>
<th>Weight kg (without oil)</th>
<th>KDM</th>
<th>CKDM</th>
<th>CCKDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>205</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>202</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>202</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>198</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>198</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>198</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>198</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>195</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>195</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>188</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>186</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>156</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>145</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>133</td>
<td>194</td>
<td>232</td>
<td>-</td>
<td>284</td>
<td>315</td>
<td>-</td>
<td>18</td>
<td>50</td>
<td>102</td>
<td>90</td>
<td>180</td>
<td>230</td>
<td>-</td>
<td>345</td>
<td>N</td>
<td>1.855</td>
<td>22.5</td>
<td>25</td>
<td>-</td>
</tr>
</tbody>
</table>

NB: The arrows indicate input and output in the standard version.

**Dimensions are subject to alteration without notice.**

Fluid couplings - 1305

Drive with us
KDMB and KDMBP

KDMB (with brake drum)

KDMBP (with brake disc)

Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
<th>Size</th>
<th>Dimensions</th>
<th>Size</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>270 x 190</td>
<td>25</td>
<td>330 x 230</td>
<td>50</td>
<td>700 x 400</td>
</tr>
<tr>
<td>20</td>
<td>300 x 220</td>
<td>35</td>
<td>360 x 250</td>
<td>75</td>
<td>900 x 450</td>
</tr>
<tr>
<td>27</td>
<td>370 x 260</td>
<td>50</td>
<td>900 x 500</td>
<td>100</td>
<td>1200 x 600</td>
</tr>
</tbody>
</table>

- **When ordering**, specify: **Size - Model**.
- **D** and **Q** finished bores upon request and special **I** dimension.

Example: 17KDMB - BRAKE DRUM 400 x 150

Dimensions are subject to alteration without notice.

NB: The arrows indicate input and output in the standard version.

ONLY FOR 27 - 29 ARE AVAILABLE HUBS FOR BRAKE DRUM/DISC WITH CENTRAL FLANGE

Weight in kg

- **Brake drum**: 200 - 75 kg, 270 - 95 kg, 315 - 118 kg, 400 - 150 kg, 500 - 190 kg
- **Brake disc**: 27 - 97 kg, 50 - 154 kg, 105 - 315 kg, 155 - 630 kg, 205 - 880 kg

Fluid couplings - 1305
Fluid couplings - 1305

<table>
<thead>
<tr>
<th>Series</th>
<th>KCG</th>
<th>KCGB</th>
<th>CKCGBP</th>
<th>CKCG...</th>
<th>CCKCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>C1</td>
<td>C2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FLUID COUPLING FITTED WITH HALF GEAR COUPLINGS, TO BE RADIIALLY DISASSEMBLED WITHOUT MOVING THE MACHINES

NB: The arrows indicate input and output in the standard version.

- **KCG** (with brake drum)
- **CKCG** (with brake disc)

Brake drum or disc upon request

Dimensions

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Gear Coupling</th>
<th>Weight Kg (without oil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>105 - 176</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>205 - 260</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>305 - 350</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>400 - 450</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>500 - 550</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>600 - 650</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>800 - 850</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>1000 - 1050</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>1200 - 1250</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>1400 - 1450</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>1600 - 1650</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>1800 - 1850</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>2000 - 2050</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>2200 - 2250</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>2400 - 2450</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>2600 - 2650</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>2800 - 2850</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>3000 - 3050</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>3200 - 3250</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>3400 - 3450</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>3600 - 3650</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>3800 - 3850</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>4000 - 4050</td>
<td>-</td>
</tr>
</tbody>
</table>

- **UPON REQUEST**
- (5) E.I. = EXPOSED INCH SCREWS
- (6) GEAR COUPLING WITH SPECIAL CALIBRATED BOLTS
- WHEN ORDERING, SPECIFY: SIZE - MODEL
- EXAMPLE: 21CKCG

DIMENSIONS ARE SUBJECT TO ALTERATION WITHOUT NOTICE

Drive with us
FLUID COUPLINGS WITH DOUBLE CIRCUIT, FITTED WITH MAIN JOURNALS AND INPUT AND OUTPUT SHAFTS

D34KDM D34CKDM

SERIES A C F D-G m1 D L M N P WEIGHT Kg (without oil) OIL max. lt CENTER OF GRAVITY J (WIR2) Kgm² AB D-1
D34KBM 1000 1400 855 140 140 1120 257.5 170 810 162 952 710 26.19 64.25
D46KBM 1330 1900 1275 160 200 1500 312.5 170 2200 390 2514 955 91.25 183.7

KEYWAYS ACCORDING TO ISO 773 - DIN 6885/1

FLUID COUPLINGS WITH DOUBLE CIRCUIT, TO BE RADIIALLY DISASSEMBLED WITHOUT MOVING THE MACHINES.

WITH HALF DISC COUPLINGS, WITHOUT MAINTENANCE

WITH HALF GEAR COUPLINGS

D34KDM

D34CKDM

Also available D46KCG. For information please apply Transfluid
SERIES 7 ÷ 13 - EK

Example of application

** NOT STANDARD**

WHEN ORDERING SPECIFY: SIZE - MODEL - DIAMETER D and G

EXAMPLE: 8 EK-D28 - G 28

DIMENSIONS ARE SUBJECT TO ALTERATION WITHOUT NOTICE
Center of Gravity

<table>
<thead>
<tr>
<th>KG</th>
<th>CG</th>
<th>CCG</th>
<th>KDM</th>
<th>CKDM</th>
<th>CCKDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>gl</td>
<td>g1</td>
<td>l1</td>
<td>g2</td>
<td>l2</td>
<td>gl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kg.</th>
<th>mm.</th>
<th>Kg.</th>
<th>mm.</th>
<th>Kg.</th>
<th>mm.</th>
<th>Kg.</th>
<th>mm.</th>
<th>Kg.</th>
<th>mm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td>0.019</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>–</td>
<td>–</td>
<td>0.039</td>
<td>0.109</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Moment of Inertia

<table>
<thead>
<tr>
<th>J</th>
<th>KG</th>
<th>CG</th>
<th>CCG</th>
<th>KDM</th>
<th>CKDM</th>
<th>CCKDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kgm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g</th>
<th>g1</th>
<th>g2</th>
<th>gl</th>
<th>g1</th>
<th>l1</th>
<th>g2</th>
<th>l2</th>
<th>gl</th>
<th>g1</th>
<th>l1</th>
<th>g2</th>
<th>l2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.012</td>
<td>0.034</td>
<td>0.020</td>
<td>0.068</td>
<td>–</td>
<td>–</td>
<td>0.072</td>
<td>0.189</td>
<td>0.217</td>
<td>0.122</td>
<td>0.307</td>
<td>0.359</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kg.</td>
<td>mm.</td>
<td>Kg.</td>
</tr>
<tr>
<td>0.039</td>
<td>0.109</td>
<td>0.011</td>
</tr>
</tbody>
</table>

DIMENSIONS ARE SUBJECT TO ALTERATION WITHOUT NOTICE.
SERIES 7÷27 - KSD - CKSD - CCKSD

TAPER BUSH VERSION

- Ø BORES RELATIVE TO TAPER BUSHES WITH A KEYWAY ACCORDING TO ISO 773 - DIN 6885/1
- CYLINDRICAL BORE WITHOUT TAPER BUSH ISO 773 - DIN 6885/1
- TAPER BUSH WITHOUT A KEYWAY

CYLINDRICAL BORE VERSION

- STANDARD CYLINDRICAL BORES WITH KEYWAYS accordance to ISO 773 - DIN 6885/1
- WHEN ORDERING SPECIFY SIZE - MODEL - Ø DIAMETER

Example: 12KSD - D 42

DIMENSIONS ARE SUBJECT TO ALTERATION WITHOUT NOTICE
STANDARD PULLEYS

KSI - CKSI - CCKSI

Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>D</th>
<th>U</th>
<th>Flanged pulley</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upon request

When ordering, specify size, model, D diameter, Dp, number and type of grooves.

Example: 13 CKSDF - CKS - PULLEY Dp 250 - 5 SPCC

Dimensions are subject to alteration without notice.
10. FILLING
Transfluid hydraulic couplings are supplied without oil.
Standard filling: X for K series, 2 for CK series, and 3 for CCK series.
The quantities are indicated on page 13 and 15 of this catalog.
Follow the procedure indicated on Installation and Maintenance manuals 150 GB and 155 GB delivered with each coupling.
Suggested oil: ISO32 HM for normal operating temperatures.
For temperatures down zero, ISO FD 10 (SAE 5W) and for temperatures lower than -20° contact Transfluid.

11. SAFETY DEVICES

FUSIBLE PLUG
In case of overloads, or when slip reaches very high values, oil temperature increases excessively, damaging oil seals and consequently allowing leakage.
To avoid damage when used in severe applications, it is advisable to fit a fusible plug. Fluid couplings are supplied with a fusible plug at 140°C (109°C, 120°C or 198°C upon request).

SWITCHING PIN
Oil venting from fusible plug may be avoided with the installation of a switching pin. When the temperature reaches the melting point of the fusible ring element, a pin releases that intercepts a relay cam that can be used for an alarm or stopping the main motor. As for the fusible plug, 2 different fusible rings are available (see page 27).

11.1 SWITCHING PIN DEVICE
This device includes a percussion fusible plug installed on the taper plug. The percussion fusible plug is made of a threaded plug and a pin held by a fusible ring coming out due to the centrifugal force when the foreseen melting temperature is reached. Such increase of temperature can be due to overload, machinery blockage or insufficient oil filling. The pin, moving by approx. 16 mm, intercepts the cam of the switch to operate an alarm or motor trip signal.
After a possible intervention and removal of the producing reason, this device can be easily restored with the replacement of the percussion plug or even the fusible ring following the specific instructions included in the instruction manual.

With external wheel as driver, as indicated in Fig. 5, the percussion plug operates in any condition, while in case of driven external wheel it can operate correctly only in case of increase of the slip due to overload or excessive absorption.
It is possible to install this system on all fluid couplings starting from size 13K even in case it has not been included as initial supply, asking for a kit including percussion fusible plug, gasket, modified taper plug, counterweight for balancing, glue, lever switch assembly installation instructions.
In order to increase the safety of the fluid coupling a standard fusible plug is always installed, set at a temperature greater than that of the percussion fusible plug.

For a correct operation, please refer to the instructions relevant to the standard or reverse installation described at page 26.

Switch standard supply is 230 Vac:
Atex version is available too.

ELECTRONIC OVERLOAD CONTROLLER
This device consists of a proximity sensors measuring the speed variation between the input and output of the fluid coupling and giving an alarm signal or stopping the motor in case the set threshold is overcome.
With such a device, as well as with the infrared temperature controller, no further maintenance or repair intervention is necessary after the overload occurrence, because the machinery can operate normally, once the cause of the inconvenience has been removed (see page 28).

INFRARED TEMPERATURE CONTROLLER
To measure the operating temperature, a device fitted with an infrared sensor is available. After conveniently positioning it by the fluid coupling, it allows a very precise non-contact temperature measurement.
Temperature values are reported on a display that also allows the setting of 2 alarm thresholds, that can be used by the customer (see page 29).
11.2 OVERLOAD CONTROLLER (Fig. 6)

When load torque increases, slip also increases and output speed consequently decreases. The said speed variation can be measured by means of a sensor sending a pulse train to the speed controller. If the rotating speed goes lower than the set threshold (see diagram) on the controller, a signal is given through the intervention of the inner relay. The device has a "TC" timer with a blind time before starting (1 - 120 s) avoiding the alarm intervention during the starting phase, and another "T" timer (1 – 30 s) preventing from undesired relay intervention during sudden changes of torque. The device also provides a speed proportional analogic output signal (0 – 10 V), that can be forwarded to a display or a signal transducer (4 – 20 mA).

Standard supply is 230 V ac, other supplies are available upon request: 115 V ac, 24 V ac or 24 V dc, to be specified with the order. ATEX version is available too.

CONTROLLER PANEL (Fig. 7)

- **TC** Blind time for starting
 - Set screw regulation up to 120 s.

- **DS** Speed range regulation
 - Programmable DIP-SWITCH (5 positions), selecting relay status, proximity type, reset system, acceleration or deceleration.
 - Programming speed Dip-Switch with 8 positions allows to choose the most suitable speed range, according to the application being performed.

- **SV** Speed level (set point)
 - Set screw regulation with digits from 0 to 10. The value 10 corresponds to full range set with Dip-Switch.

- **R** Reset
 - Local manual reset is possible through R button, or remote reset by connecting a N.O. contact at pins 2-13.

- **SS** Threshold overtaking
 - (RED LED) It lights up every time that the set threshold (set point) is overtaken.

- **A** Alarm led
 - (RED LED) It lights up when alarm is ON and the inner relay is closed.

- **E** Enable
 - (YELLOW LED) It lights up when the device is enabled.

- **T** Delay time
 - Set screw regulation up to 30 s.

- **ON** Supply
 - (GREEN LED) It shows that the device is electrically supplied.

For further details, ask for TF 5800-A.
11.3 INFRARED TEMPERATURE CONTROLLER

This is a non contact system used to check fluid coupling temperature. It is reliable and easily mounted. It has 2 adjustable thresholds with one logical alarm and one relay alarm.

The proximity sensor must be positioned near the fluid coupling outer impeller or cover, according to one of the layouts shown in Fig. 8. It is advised to place it in the A or C positions, as the air flow generated by the fluid coupling, during rotation, helps removal dirt particles that may lay on the sensor lens.

The distance between the sensor and the fluid coupling must be about 15-20 mm (cooling fins do not disturb the correct operation of the sensor).

To avoid that the bright surface of the fluid coupling reflects light, and thus compromises a correct temperature reading, it is necessary to paint the surface, directly facing the sensor with a flat black colour (a stripe of 6-7 cm is sufficient). The sensor cable has a standard length of 90 cm. If required, a longer one may be used only if plated and shielded as per type “K” thermocouples.

SENSOR	Temperature range	0 ÷ 200 °C
	Ambient temperature	-18 ÷ 70 °C
	Accuracy	0.0001 °C
	Dimensions	32.5 x 20 mm
	Standard wire length	0.9 m
	Body	ABS
	Protection	IP 65

CONTROLLER	Power supply	85…264 Vac / 48…63 Hz
	Relay output OP1	NO (2A – 250V)
	Logical output OP2	Not insulated
	AL1 alarm (display)	Logic (OP2)
	AL2 alarm (display)	Relay (OP1) (NO, 2A / 250Vac)
	Pins protection	IP 20
	Body protection	IP 30
	Display protection	IP 65
	Dimensions	1/32 DIN – 48x24x120 mm
	Weight	100 gr

* TO BE MADE LONGER WITH TWISTED AND SHIELDED WIRES FOR TYPE K THERMOCOUPLES (NOT SUPPLIED)
OTHER FLUID COUPLINGS RELATED TRANSFLUID PRODUCTS

FLUID COUPLING
KSL SERIES
Start up and variable speed drive up to 4000 kW

FLUID COUPLING
KPT SERIES
Start up and variable speed drive up to 1700 kW

FLEXIBLE COUPLING
BM-B3M SERIES
Up to 35100 Nm

DISC AND DRUM BRAKE
NBG/TFDS SERIES
Up to 19000 Nm

PNEUMATIC CLUTCH
TP SERIES
Up to 11500 Nm

FLUID COUPLING
KPTO SERIES
For internal combustion engine P.T.O. for pulley and cardan shaft up to 1000 kW

OIL OPERATED POWER TAKE OFF
HF SERIES
Up to 1320 kW

FLUID COUPLING
K SERIES
For internal combustion engine Up to 1300 kW

ELASTIC COUPLING
RBD SERIES
For internal combustion engine up to 16000 Nm